=
-
=t
(B

A LG . L L AL A

jewpoints Research Institu

Chains of meaning in the STEPS system

lan Piumarta

This material is based upon work supported in
part by the National Science Foundation under
Grant No. 0639876. Any opinions, findings, and
conclusions or recommendations expressed in
this material are those of the author(s) and do
not necessarily reflect the views of the
National Science Foundation.

VPRI Memo M-2009-011

Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

Chains of meaning in the ST EPS system file:///home/piumarta/src/cola/doc/com.html

Chains of meaning in the STEPS system

2009-10-21

Contents:

Introduction

Parsers, streams, pipelines and objects

A simple s-expression language

Stage one: file to text stream

Stage two: text to s-expression trees

Stage three: prefix tree to postfix abstract instructions
Stage four: abstract instructions to Intel 386 assembler
Performance is not the goal

9 Parsing expression syntax

9.1 Primitive expressions

9.2 Prefix operators

9.3 Postfix operators

9.4 Binary operators

9.5 Output expressions

10 Code listings

10.1 Stage two: s-expression text to prefix tree

10.2 Stage three: prefix tree to postfix abstract code

10.3 Stage four: postfix abstract code to Intel assembly

R I U W N ==

1 Introduction

This memo illustrates the idea of a STEPS "Chain of Meaning" (CoM) using a complete
example that converts a textual representation of abstract syntax trees into executable
native code for the Intel 386. Simplicity and clarity at each stage in the chain are the
primary goals of this example CoM.

2 Parsers, streams, pipelines and objects

Parsers operate on streams of objects. Each parser has an input stream and an output
stream. The input stream is read, patterns of objects within it recognised, and
corresponding actions performed. Actions can write objects to the parser's output
stream.

10f18 10/22/2009 01:56 PM
VPRI Memo M-2009-011

Chains of meaning in the ST EPS system file:///home/piumarta/src/cola/doc/com.html

Parser

Toput output
Stream Stream

Any stream can be used as input for a parser. A single object stream can be the output
stream for one parser and the input stream for another. This creates pipelines of stages
transformations, each stage being driven by a particular parser. The input end of a
pipeline can be fed from a file input stream (converting the contents into a stream of
integers) and the output end can be connected to file output stream (converting a
sequence of objects back into a textual or binary form).

Toput
Stream

000

It should be clear that a Chain of Meaning is just a pipeline with higher-level
abstractions entering on the left and lower-level ones exiting on the right.

Objects are either atomic or structured. Atomic objects include integers (text input
stream, binary output stream), strings (treated as a single object), symbols (interned
strings). Structured objects are ordered collections of objects.

Parsers can recognise patterns in both atomic and structured objects, and can generate
both structured and atomic objects on their output stream. Structures are parsed as if
their contents exist in their own local stream, with an "end of stream" condition at the
end of the structure.

The remainder of this document describes a CoM for a simple s-expression language. Its
CoM looks like this:

text prefix tree abstract code
-> - ->
prefix s-expression tree postfix abstract code 386 assemblp

Tnput output
stream stream

assembler

b inap
execukable

000

20f18 10/22/2009 01:56 PM
VPRI Memo M-2009-011

Chains of meaning in the ST EPS system file:///home/piumarta/src/cola/doc/com.html

30f18

Note:

No explanation of the grammar of parsing expressions is given during the
presentation. The appendices contain an overview of the expressions used to
define the parsers in this document.

3 A simple s-expression language

The goal is to create a CoM that can convert a text representation into an executable
representation. For simplicity the input will be s-expressions (no irrelevant surface
syntax) and the output will be 386 assembly language (no irrelevant complexity due to
the construction of binary instructions). A small example s-expression program, shown
below, will illustrate the CoM converting text to executable code.

(define nfibs
(lambda (n)
(if (< n 2)
1
(+ 1 (+ (nfibs (- n 1)) (nfibs (- n 2))))))))

(print (nfibs 32))

4 Stage one: file to text stream

The first CoM stage converts text from a file or string into a sequence of integer
objects. It is of little interest and is omitted here.

5 Stage two: text to s-expression trees

The second CoM stage recognises s-expressions within the input text stream and
creates corresponding tree-structured representations. Presented with the example
program shown above, this stage should produce the following two structures on its
output stream:

(print (nfibs 32))
(define nfibs (lambda (n) (if (<« n2) 1 (+ 1 (+ (nfibs (- n 1)) (nfibs (- n 2))))))))

The first rule tells the stage to look for the text of an entire s-expression on the input
whenever the output stage needs to be refilled.

start = sexpr

The next few rules deal with whitespace and comments. A blank is a space, tab or
newline character. Comments run from a semicolon to the end of the line. Individual
tokens are separated by any number of blanks or comments; the corresponding rule is
given the very short name " " because it is used frequently.

blank = [\t\n\r]
comment = ";" (leol .)*
eo‘L = (u\nu ||\r.||*) | (u\r.u ||\n||*)

(blank | comment)*

10/22/2009 01:56 PM
VPRI Memo M-2009-011

Chains of meaning in the ST EPS system file:///home/piumarta/src/cola/doc/com.html

40f 18

Next come the lexical elements of the language. Letters (characters within identifiers)
will be any alphabetic or punctuation character. Digits are the usual 0 through 9.
Symbols are made of a letter followed by letters and digits. A number is made from a
sequence of digits.

letter = [-+I\$\%&*./:<=>?@A-Z\\" a-z|~]

digit = [0-9]

symbol = (letter (letter | digit)*) $$:s -> :s
number = digit+ $#10 :n _ -> :n

An s-expressions is either an atom (symbol or number) or list, containing zero or more
s-expressions surrounded by parentheses.

sexpr = (atom | list)
atom = symbol | number
list = "(" sexpr* :L _")" ->:1

6 Stage three: prefix tree to postfix abstract
instructions

Tree-structured s-expressions are converted to a linear, postfix form that is easy to
execute on a stack machine. The machine has an accumulator, a stack, and a memory
containing named storage locations (global variables). Numbered labels identify the
locations of function entry points and internal branch destinations.

MEmo Ty abstract machine

data
accumulator stack

[-

REL

fao
bar
baz

F 3

P
=

functions

feteh & decode

Literal values can be loaded into the accumulator. Values can be moved between the
accumulator and the top of the stack, and moved between the accumulator and a
named memory location. Operators use the accumulator as their first operand and take
their other (if any) from the top of the stack. Results are left in the accumulator.

This stage of the CoM converts the two tree-structured objects produced by stage two
into the following sequence of objects which form an equivalent abstract machine
program.

(Llabel 3

enter

load-long 2 save load-arg 0@ less branch-false 1

load-long 1 branch 2

label 1

load-long 2 save load-arg 0@ sub save load-var nfibs call 1 save

10/22/2009 01:56 PM
VPRI Memo M-2009-011

Chains of meaning in the ST EPS system file:///home/piumarta/src/cola/doc/com.html

load-long 1 save load-arg 0@ sub save load-var nfibs call 1 add save
load-long 1 add

label 2

leave

main

long nfibs load-label 3 store-var nfibs

load-long 32 save load-var nfibs call 1 save load-var print call 1
exit)

The operation of each instruction is as follows.

instruction operation

label integer define the location of a numbered label

long symbol create a named memory location (global variable)
label symbol create a named memory location (global variable)
load-long integer place a literal integer in the accumulator

load-var symbol copy the value stored in the named memory location to the

accumulator

load-label symbol copy the address of the named memory location to the
accumulator

load-arg integer copy the value stored in the numbered argument to the
accumulator

save push the value in the accumulator onto the stack

add pop the top of the stack and add it to the accumulator

sub pop the top of the stack and subtract it from the accumulator

less pop the top of the stack and compare it with the accumulator;

set the accumulator to 1 if it was less than the stack item,
zero otherwise

store-var copy the value in the accumulator into the named memory
location

call integer call the address in the accumulator as a function with the
given number of actual arguments

enter create a new function activation record in the stack

Lleave return from the most recent function activation

branch integer transfer control to the numbered label

branch-false transfer control to the numbered label if the accumulator is
integer 76T0

The first rule in the parser tells the stage to look for an object encoding an expression on
the input stream whenever the output stream needs to be refilled.

start = expr

The next three rules are for convenience: tong and name recognise and yield an integer or
symbol object; arity yields a count of the number items left in the current stream.

50f18 10/22/2009 01:56 PM
VPRI Memo M-2009-011

Chains of meaning in the ST EPS system file:///home/piumarta/src/cola/doc/com.html

60f18

long = & long?
name = & symbol? .
arity = .*:x ->" (list-length x)

Two kinds of lists occur within s-expressions: actual args to function calls and formal
params in function definitions.

Each actual argument to a function call is an expression that must be saved on the
stack as soon as it is available. Inserting a save instruction after each argument
expression accomplishes this.

(::a ::e save)
(::e save)

0

args = expr:e args:a
| expr:e

o
vV V. V

Each formal parameter is declared (to a supporting function arg-name) to differentiate it
from a global variable during the compilation of a function body. The rule is written so
that parameters are declared from right to left.

params = (name:h params:t | name:h) ->" (arg-name h)
An expression is one of the objects or structures produced as output by stage one.

Integer literals are trivial and symbols name either a global or local (function
parameter) variable. They appear verbatim in the tree and are converted into a
corresponding load instruction. The support function is-arg differentiates between a local
and global name.

expr = long:x -> (load-long :x)
| name:x & (is-arg x):n -> (load-arg :n)
| name: X -> (load-var :x)

Three binary operators are used in the example program. All operators are "applied"
like functions and so appear inside a nested structure. The corresponding rule must
match the start of this nested structure before checking for the operator. Operands are
"evaluated" right to left, and the second must be saved before the first overwrites it.
When both operands are available the instruction corresponding to the operator is
emitted.

| "('< expr:x expr:y) -> (::y save ::x less)
| '('+ expr:x expr:y) -> (::y save ::x add)
| '('- expr:x expr:y) -> (::y save ::x sub)

Three "special forms" must be dealt with before function calls.

(define name value) creates a global variable by reserving a data memory location wide
enough to store a value and named according to the variable, then storing the result of
evaluating the initialiser expression into the location.

| "('define name:n expr:e) -> (long :n ::e store-var :n)

(lambda (args...) expr...) creates a function value. The sequence of instructions
corresponding to the expressions in the body of the function are created, delimited by
enter and leave instructions (function prologue and epilogue, respectively). This sequence

10/22/2009 01:56 PM
VPRI Memo M-2009-011

Chains of meaning in the ST EPS system file:///home/piumarta/src/cola/doc/com.html

must not be placed in the program at the point it occurs. It is saved for out-of-line
compilation by the support function save-lambda which returns a unique label identifying
the entry point. The address of this label is the "value" of the lambda expression, and a
load of its address is compiled in-line in the code in place of the entire lambda
expression.

| '('lambda '(params) expr*:b) (enter :::b leave):1l

->
->" (save-lambda 1):n
-> (load-label :n)

(if condition consequent alternate) evaluates the consequent if the condition is true, the
alternate if not. Two labels are required, for the branch from the condition to the
alternate clause and from the end of the consequent clause to the end of the entire
expression. The labels are generated as unique integers by the support function

new-label.
| "('if expr:t expr:x expr:y) ->" (new-label):a ->" (new-label):b
-> (::t branch-false :a
11X branch :b
label :a ::y
label :b)

Function calls are a sequence whose first expression yields a function address to be
called, with the remaining expressions in the structure being the actual arguments. The
call instruction is told the number of actual arguments so that it can clean up the stack
after the call returns.

| '(expr:f &rity:n args:a) -> (::a ::f call :n)
Anything else that occurs in a the post-fix abstract code is an error.

| X ->" (error "unrecognised expression: " Xx)

7 Stage four: abstract instructions to Intel 386
assembler

For execution on real hardware, the abstraction is extended with a stack pointer
(identifying the topmost item on the stack) and a frame pointer (identifying the start of
the current function activation record).

Function arguments are passed on the stack. Each function activation saves the caller's
frame pointer and return address in the stack, loads the frame pointer with the address
of the first actual argument (numbered 0) and loads the stack pointer with the address
of the saved return address (which is now the topmost item on the stack). The stack
grows downward, towards lower memory addresses.

70f18 10/22/2009 01:56 PM
VPRI Memo M-2009-011

Chains of meaning in the ST EPS system file:///home/piumarta/src/cola/doc/com.html

physical machine

stack

argumnent H

argunent 1

arqument 0 ‘_: frame pointer

return address

caller's frame pointer ‘_: stack pointer

Machine registers are reserved for the accumulator, stack pointer and frame pointer.

register assignment

%seax accumulator
%sebx stack pointer
%esi frame pointer

The s-expression

(print (nfibs 32))

which stage 2 has transformed into an abstract program

(load-long 32 save load-var nfibs call 1 save load-var print call 1)

will be transformed into native code

movl $32, %eax ; load-long 32
subl $4, %ebx ; save

movl %eax, (%ebx)

movl _V nfibs, %eax ; load-var nfibs
call *%eax ; call 1

addl $4, %ebx

subl $4, %ebx ; save

movl %eax, (%ebx)

movl _V_print, %eax ; load-var print
call *%eax ; call 1

addl $4, %ebx
by this stage.

Stage four recognises each abstract instruction in a stream of instructions produced by
the previous stage, emitting the corresponding assembly language as a side effect of
recognition.

start = insn*

Labels are numeric and must be given a prefix.

insn = 'label .:1 TUL\AL: M

80f18 10/22/2009 01:56 PM
VPRI Memo M-2009-011

Chains of meaning in the ST EPS system file:///home/piumarta/src/cola/doc/com.html

90f18

Space for global variables is allocated in the data segment. Each global variable name is
prefixed with v to lessen the danger of contention with externally-defined symbols.

| 'long .:n o .data"
MV \$n: .long 0"
o ctext"

The 1load instructions copy their operand into the accumulator and store copies the
accumulator into memory.

| 'load-long 1 T mov'l $\#1, %eax"

| 'load-arg n ->"(*4n):n " movl (\#n) (%esi), %eax"
| ‘load-var H " movl ~V \$n, %eax"

| 'load-label .:n T mov'l $L\#n, %eax"

| 'store-var .:n o movl %eax, _V_\s$n"

The save instruction pushes the accumulator onto the stack.

| 'save o subl $4, %ebx"
e mov'1 %eax, (%ebx)"

Arithmetic operators perform an operation between the stack and the accumulator,
then pop the stack. Relational operators generate a concrete value (zero or non-zero) in
the accumulator.

a a %ebx), %eax
| 'add ddl (%ebx) "
o addl $4, %ebx"
su su %ebx), Seax
| [b AN b'L (b) "
o addl $4, %ebx"
| 'less T cmpl (%ebx), %eax"

o setl %al"
movzbl %al, %eax"
" addl $4, %ebx"

Branches transfer control to a numbered label. Conditional branches test the
accumulator for zero.

| 'branch .:1 o jmp L\#L"
| 'branch-false .:1 " cmpl $0, %eax"
n je L\#'Lu

Functions are applied by calling the computed destination address in the accumulator.
Actual arguments are popped from the stack on return.

| 'call .:n ->"(* 4 n):n o call *%eax"
o addl $\#n, %ebx"

Function prologue retrieves the return address and pushes it onto the stack along with
the caller's frame pointer. A new frame pointer is set up for the callee.

| 'enter popl secx"

T mov'l %ecx, -4(%ebx)"
T mov'l %esi, -8(%ebx)"
T mov'l %ebx, %esi"

o subl $8, %ebx"

Function epilogue undoes the prologue, popping the caller's frame pointer and return

10/22/2009 01:56 PM
VPRI Memo M-2009-011

Chains of meaning in the ST EPS system

address from the stack.

| 'leave

movl
movl
pushl
ret"

file:///home/piumarta/src/cola/doc/com.html

%esi, %ebx"
-8(%ebx), %esi"
-4 (%ebx)"

The program begins execution at the main instruction which tidies up the C stack and
allocates a stack (using malloc) for the compiled program to use. The stack and frame
pointers are initialised to point to the end of the stack memory. (The variable PRreFIx is
defined to a string containing the prefix, if any, required for symbols in the C

namespace on the target platform.)

| 'main

Execution finishes with an exit instruction, by performing a return from the

| 'exit

o .globl

*"\${ PREFIX}main:"

o leal
o andl
pushl
o pushl
T mov'l
o pushl
o subl
e movl
o call
o leal
o leal

T addl
popl
popl
T leal
T mov'l
T ret"

\${ PREFIX}main"

4(%esp), %ecx"
$-16, %esp"
-4(%ecx)"

%ebp"

%esp, %ebp"

%secx"

$20, %esp"

$1024, (%esp)"
\${ PREFIX}malloc"
1024 (%eax), %esi"
-8(%esi), %ebx"

C stack.

$20, %esp"
%ecx"

%ebp"

-4(%ecx), %esp"
$0, %eax"

The utility function print called from the example program is hand-written and placed at

the end of the program.

“t"print: popl
o mov'l
o movl
o movl
o movl
o call
movl
pushl
ret"
T .data"
.long
.asciz
e .text"

-4 (%ebx)"

%esi, -8(%ebx)"

$ S fmti, (%esp)"
(%ebx), %eax"
%eax, 4(%esp)"

\${ PREFIX}printf"
-8(%ebx), %esi"
-4(%ebx)"

print"
\ IIO/Od\\ nn

Anything else appearing in the stream of instructions indicates an error in the

implementation.

| .:x

10 of 18
VPRI Memo M-2009-011

(error "unrecognised instruction: " x)

10/22/2009 01:56 PM

Chains of meaning in the ST EPS system file:///home/piumarta/src/cola/doc/com.html

)

When presented with the output from stage 3, this stage produces the following text on
its output stream:

L3:
popl %eCX
movl %ecx, -4(%ebx)
movl %esi, -8(%ebx)
movl %ebx, %esi
subl $8, %ebx
mov'l $2, %eax
subl $4, %ebx
movl %eax, (%ebx)
movl (0) (%esi), %eax
cmpl (%ebx), %eax
setl %al
movzbl %al, %eax
addl $4, %ebx
cmpl $0, %eax
je L1
mov'l $1, %eax
jmp L2

L1:
movl $2, %eax
subl $4, %ebx
movl %eax, (%ebx)
movl (0) (%esi), %eax
subl (%ebx), %eax
addl $4, %ebx
subl $4, %ebx
mov'l %eax, (%ebx)
movl _V nfibs, %eax
call *%eax
addl $4, %ebx
subl $4, %ebx
movl %eax, (%ebx)
movl $1, %eax
subl $4, %ebx
mov'l %eax, (%ebx)
mov'l (0) (%esi), %eax
subl (%ebx), %eax
addl $4, %ebx
subl $4, %ebx
movl %eax, (%ebx)
mov1l _V nfibs, %eax
call *%eax
addl $4, %ebx
addl (%ebx), %eax
addl $4, %ebx
subl $4, %ebx
mov'l %eax, (%ebx)
movl $1, %eax
addl (%ebx), %eax
addl $4, %ebx

L2:
movl %esi, %ebx
movl -8(%ebx), %esi
pushl -4 (%ebx)
ret

11 of 18 10/22/2009 01:56 PM

VPRI Memo M-2009-011

Chains of meaning in the ST EPS system

12 of 18

.globl
main:
leal
andl
pushl
pushl
mov'l
pushl
subl
movl
call
leal
leal
.data
_V nfibs: .long 0
Ltext
mov'l
movl
mov'l
subl
movl
movl
call
addl
subl
mov'l
mov'l
call
addl
addl
popl
popl
leal
movl
ret
print: popl
mov'l
mov'l
mov'l
mov'l
call
movl
pushl
ret
.data

main

4(%esp), %ecx
$-16, %esp
-4(%ecx)

%ebp

%esp, %ebp
%eCX

$20, %esp
$1024, (%esp)
malloc

1024 (%eax), %esi
-8(%esi), %ebx

$L3, %eax
%eax, _V nfibs
$32, %eax

$4, %ebx

%eax, (%ebx)
_V nfibs, %eax
*%eax

$4, %ebx

$4, %ebx

%eax, (%ebx)
_V print, %eax
*%eax

$4, %ebx

$20, %esp

%eCX

%sebp

-4(%ecx), %esp
$0, %eax

-4 (%ebx)

%esi, -8(%ebx)

$ S fmti, (%esp)
(%ebx), %eax
%seax, 4(%esp)
printf

-8(%ebx), %esi
-4 (%ebx)

V_print: .long print

:Sifmti: .asciz
.text

8 Performance is not the goal

"%d\n"

file:///home/piumarta/src/cola/doc/com.html

The above code runs at 70% the speed of the same program written in C and compiled
with typical optimisation (gcc-4.3 -02) on Intel Core and Core2 processors.

Several peephole optimisations are possible while converting the sequence of abstract
instructions to concrete instructions. Their definitions are obvious and their impact on

performance should be easily measurable.

VPRI Memo M-2009-011

10/22/2009 01:56 PM

Chains of meaning in the ST EPS system file:///home/piumarta/src/cola/doc/com.html

Stages two, three and four contain less than 100 lines of "code" and are close to the
simplest possible non-trivial CoM that transforms text input describing high-level
semantics into machine code output. A complete, uncommented listing is given in the
appendices.

Appendices

9 Parsing expression syntax

Note:

Only the subset of STEPS parsing expressions needed to understand this
memo are explained here. Refer to the parser documentation for full details.

Each rule has the form

name = €

where e is a parsing expression. An expression has two properties: success and a value.
A rule fails (does not succeed) when the first expression in it fails; if all expressions
succeed then the rule succeeds. Every expression can yield a value; if a rule succeeds
then its value is that of the last expression "evaluated" within it. If an expression fails,

13 0of 18

its value is undefined.

9.1 Primitive expressions
expression matches value
nothing (always succeeds) undefined
any object (fails at the end of the object matched
the stream)
[A-Za-2] any letter (integer) the letter matched
"abc” a sequence of letters the sequence matched
(integers)
(e) the expression e the value of e
symbol a literal symbol object the object matched
(e) a structure whose contents ¢
match e
>0 always the value of the output
expression o
" “output always a sequence containing the
string"

VPRI Memo M-2009-011

generated output

10/22/2009 01:56 PM

Chains of meaning in the ST EPS system file:///home/piumarta/src/cola/doc/com.html

9.2 Prefix operators

operator matches value

&e e, without discarding the related input e

te not e, without discarding the related input undefined

& predicate the current input object, iff predicate is the input object
true, without discarding the input matched

9.3 Postfix operators

operator matches value

ex Zero or more a sequence of the values of each e
occurrences of e matched

e+ one or more a sequence of the values of each e
occurrences of e matched

e $$ e the symbol interned from the value of e

e $#base e the value of e converted to a number in

the given base

9.4 Binary operators

operator matches value

el ez el and then e2 €2

el | e2 el otherwise e2 the first e matched

el : name el el after storing it in name

9.5 Output expressions

Output expressions construct a new value while evaluating a rule. They all have the
form

-> output-expression

where output-expression constructs an object as follows:

output value
expression
symbol the given literal symbol
14 of 18 10/22/2009 01:56 PM

VPRI Memo M-2009-011

Chains of meaning in the ST EPS system file:///home/piumarta/src/cola/doc/com.html

(expression...) g sequence (structure) containing zero or more output
expressions

:name the object stored in the named variable

 :name the objects in the sequence stored in the named variable,
spliced in-line into the enclosing output sequence

: 1 :name the objects in the sequences in the sequence stored in the
named variable, spliced in-line into the enclosing output
sequence

" (host-expression) the result of evaluating the host-expression (in the STEPS
system this is a COLA "amino" expression)

Output expressions construct a new "current value" while scanning left-to-right through
a rule. They do not write anything to the output stream (except for the value of the start
rule, which is written implicitly to the output stream after a successful match).

Unstructured output (a sequence of integers) can be constructed from an output string
expression. When not preceded by -> the contents of the output string is written to the
parser's output stream as a sequence of characters. Output strings have the form

' "“output-characters"

where each output-character is as follows:

character value

\n a newline character

\r a carriage-return character

\t a tab character

\" a double quote character

\${name} the characters formed by converting the object stored in the

named variable to a string

\#{name} the characters formed by converting the object stored in the
named variable to an integer

character any other character is copied verbatim to the output

The braces around the variable names can be omitted if that does not create any
ambiguity (the name is followed by a non-identifier character). The following two
output strings are equivalent.

“UL\#{number}:"
*"L\#number: "

15 0f 18 10/22/2009 01:56 PM
VPRI Memo M-2009-011

Chains of meaning in the ST EPS system

10 Code listings

file:///home/piumarta/src/cola/doc/com.html

10.1 Stage two: s-expression text to prefix tree

blank
comment
eol

letter
digit

symbol
number

sexpr
atom
list

start

[\t\n\r]

;" (leol .)*

(u\nu ||\ru*) | (u\ru ||\n||*)
(blank | comment)*

[-+1\$\%&*. / 1 <=>?@A-Z\\" a-z|~]
[0-9]

(letter (letter | digit)*) $$:s -> :s

digit+ $#10 :n _ -> :n
_ (atom | list)
symbol | number

(" sexpr* 1 ")" -> 1

sexpr

10.2 Stage three: prefix tree to postfix abstract code

long
name
arity

args

params

expr

& long?
& symbol? .

*:X

expr:e args:a
expr:e

(
(
"('- expr:x expr:y)
(
(

(name:h params:t | name:h)

long:x

name:x & (is-arg x):n
name:x

'< expr:x expr:y)

'+ expr:x expr:y)

'define name:n expr:e)
'lambda '(params) expr*:b)

"('if expr:t expr:x expr:y)

"(expr:f &rity:n args:a)

X

start = expr

I T e
VVVVVVVVVVVYV

“(list-length x)

(::a ::e save)
(::e save)
()

*(arg-name h)

(load-long :x)
(load-arg :n)
(load-var :x)

(::y save ::x less)
(::y save ::x add)
(::y save ::x sub)
(long :n ::e store-var :n)
(enter :::b leave):1
(save-lambda 1):n
(load-label :n)

(

(

“(new-label):a ->" (new-label):b

::t branch-false :a
11X branch :b
label :a ::y
label :b)
(::a ::f call :n)

->" (error "unrecognised expression: " Xx)

10.3 Stage four: postfix abstract code to Intel assembly

start =

16 of 18

insn*

VPRI Memo M-2009-011

10/22/2009 01:56 PM

Chains of meaning in the ST EPS system

insn = 'label .:1
| ‘long .:n
| 'load-long .:1
| 'load-arg n -> (¥ 4 n):n
| 'load-var n
| 'load-label .:n
| 'store-var .:n
| 'save
| 'add
| 'sub
| 'less
| 'branch .:1

| 'branch-false .:1

| 'call .:n ->"(* 4 n):n

| 'enter

| 'leave

| ‘main

| 'exit

17 of 18
VPRI Memo M-2009-011

MV A$N:

L\#L:"

.data"
.long 0"
Ctext”
mov'l
movl
mov1
mov'l
mov'l
subl
movl
addl
addl
subl
addl
cmpl
setl
movzbl
addl
jmp
cmpl
je
call
addl
popl
mov'l
mov'l
mov'l
subl
movl
movl
pushl
ret"
.globl

*"\${ PREFIX}main:"

leal
andl
pushl
pushl
movl
pushl
subl
movl
call
leal
leal
addl
popl
popl
leal
movl
ret"
popl
mov'l
mov'l
mov'l
mov'1
call
movl
pushl
ret"

print:

file:///home/piumarta/src/cola/doc/com.html

$\#1, %eax"

(\#n) (%esi), %eax"
V. \$n, %eax"
$L\#n, %eax"

%seax, V \$n"

$4, %ebx"

%eax, (%ebx)"
(%ebx), %eax"

$4, %ebx"

(%ebx), %eax"

$4, %ebx"

(%ebx), %eax"

%al"

%al, %eax"

$4, %ebx"

L\#L"

$0, %eax"

L\#L"

*%eax"

$\#n, %ebx"

%ecx"
%ecx, -4(%ebx)"
%esi, -8(%ebx)"
%ebx, %esi"

$8, %ebx"

%esi, %ebx"
-8(%ebx), %esi"
-4(%ebx)"

\${ PREFIX}main"

4(%esp), %ecx"
$-16, %esp"
-4(%ecx)"

%ebp"

%esp, %ebp"

%ecx"

$20, %esp"

$1024, (%esp)"
\${_PREFIX}malloc"
1024 (%eax), %esi"
-8(%esi), %ebx"
$20, %esp"

%secx"

%ebp"

-4(%ecx), %esp"
$0, %eax"

-4 (%ebx)"

%esi, -8(%ebx)"

$ S fmti, (%esp)"
(%ebx), %eax"
%eax, 4(%esp)"

\${ PREFIX}printf"
-8(%ebx), %esi"
-4(%ebx)"

10/22/2009 01:56 PM

Chains of meaning in the ST EPS system file:///home/piumarta/src/cola/doc/com.html

.data"
" V print: .long print"
U S fmti: .asciz \"%d\\""
T Ctext”
| .:x “(error "unrecognised instruction: " x)

18 of 18 10/22/2009 01:56 PM
VPRI Memo M-2009-011

